Field evidence on the effectiveness of the geogrid/geocomposite reinforcement in reducing induced stress on weak subgrades

A/Prof Chaminda Gallage Queensland University of Technology (QUT) Brisbane, Australia

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Contents....

≻Background

Pavement Field trial – Logan Street

- Site location and trail sections
- Instruments, calibration, installation
- Subgrade assessments/in-situ testing

Water truck loading test and data analysis

≻Conclusion

Acknowledgements

Background

Vertosol is widespread in Queensland

Weak Subgrade

(Subgrade CBR < 3%)

Common in **Queensland** due to **Expansive Clay** soil in most areas *(Gallage, C., 2017)*

Background

Soft Subgrade Treatment Rock Blanketing Increase Granular Cover Soil Stabilization Surface Course Base Course Subbase Course

Gallage & Ramanujan (2012)

Disadvantages

- Demand for materials ROAD
- Higher Cost WORKS
- **Environmental Concerns**

Alternative

Reduce Granular Material Requirement (Hufenus et al. 2006).

Geosynthetics

- Extended Pavement Life (Duncan-Williams and Attoh-Okine 2008).
- Reduction of Lifetime Cost of Pavements (Al-Qadi and Elseifi 2007).

Background

Functions of Geosynthetics (Koerner 2005, Zornberg 2017)

Functions of Geosynthetics/Geogrids (Koerner 2005, Zornberg 2017)

Pavement Field trial

Location

Latitude: -27.7120005^o Longitude: 153.225879^o

Pavement Field trial

Project Detail

Project: Logan City Council Pavement Rehabilitation Program

Street: Logan Street

A single carriageway with one lane for each direction + parking lane

Width: 11 m (Kerb to Kerb)

Lane width: 3.2 m

Parking lane: 2.3 m

Length of the test section: 225 m

Section Profile

Instruments/sensors

- 90 instruments to monitor pressure, moisture, deflection and strain
- 26 vibrating wire earth pressure cells (24 350 kpa capacity and 2-700 kPa capacity)
- 26 moisture sensors were installed at subgrade and base layer in all 13 sections
- 9 settlement plates were installed for the measurement of deflection in 9 sections
- 7 vibrating wire strain gauges and 6 foil type strain gauges installed to measure the strain in Geocomposite
- 14 asphalt strain gauges were installed to measure the strain in fiberglass geogrids at asphalt level

Data Acquisition

- For data acquisition CR1000X data logger is used
- This device is powered using a solar panel and a backup battery
- To increase the number of sensors that can be connected to the data logger two 32 channel multiplexers were used
- Wireless data transmission to view realtime and download from your own computer

Calibration of Moisture Sensors

Calibration chart for clay

Calibration chart for 2.1 gravel

Calibration of Moisture Probe

Calibration was done using the soil sample prepared in the moisture box setup as well as using the extruded cutter samples obtained from the opposite traffic lane of the road.

Calibration of the Earth Pressure Cell

Pressure Applied vs EPC_Raw- 350KPa

Pressure Applied vs EPC_Raw- 700KPa

Installation Pressure Plates

In Base – just under asphalt layer

In Subgrade

Installation Moisture Sensors

In Subgrade

In Gravel layer

Installation of Strain Gauges

Vibrating Wire Strain Gauges

Foil Type Strain Gauges

Asphalt Strain Gauges

250 mm

 \checkmark

×

x

×

×

 \checkmark

×

×

Subgrade Level

Combigrid

PA_350 kPa

PB_350 kPa

PB_750 kPa

VW Strain Gauge

Foil Strain Gauge

Settlement Plate

FG Geogrid 40/40

FG Geogrid 80/80

Asphault Strain Gauge

MA

MB

Secugrid

Subgrade Assessment for Dry Density and Moisture Content

Comparison of Subgrade Dry Density from Cutters and Nuclear Density Gauge

Comparison of Subgrade Moisture Content from Cutters and Nuclear Density Gauge

Other Tests Conducted for Pavement Performance Evaluation

- 9 kg Dynamic Cone Penetrometer (DCP) test
- PANDA probe dynamic penetrometer with variable energy method
- LFWD PRIMA test
- LFWD Terratest 5000
- Intelligent compaction roller
- Falling Weight Deflectometer (FWD) Test

Loaded water truck applied static pressure on pressure cells (17/09/2020)

Marked pressure cell locations

Front axel tyre on each pressure cell location for 5 min (6.9 T axel load)

Strains in Geogrids during the water truck test

Section 11 – VW strain gauge

0.1 % ~ 0.2 % strain increment in geogrids/geocomposite was measured during this load test

Tentative Conclusions:

- In general, geogrids/geocomposits seem to reduce stress applied on the subgrade
- Increase in number of reinforcement layers will further decrease the stress on subgrade
- Geogrid/Geocomposite is more effective in reducing stress when it is placed close to the surface
- A 50 mm asphalt layer has a significant structural capacity (70% of applied stress)

Queensland Government

Department of Transport and Main Roads

We greatly acknowledge

- Co-authors: Dr Jianfeng Xue (UNSW), Mr Jinjiang Zhong (LCC), Mr Jothi Ramanujam(QDTMR), Dr Jeffrey Lee (ARRB)
- QUT PhD students: Chamara Jayalath, Kasun Kankanamge, Tharindu Abeykoon,
- Logan City Council Construction Team
- GEL Instrumentation and FSG for discounted service

Project Team

- Logan City Council Road Groups
- Queensland Department of Transport and Main Roads (DTMR),
- Australia Road Research Board (ARRB),
- Queensland University of Technology (QUT) and
- University of New South Wales (UNSW)

Department of Transport and Main Roads

QUT

SHAPING OUR TRANSPORT FUTURE

Winner of 2020 Local Government Managers Australia (LGMA - Queensland) Award for Excellence - Collaboration Category

