

Hydration Behavior of Geosynthetic Clay Liners (GCLs) Manufactured with Laboratory Type Needle Punching Equipment

Bilal Enes Taskesti¹ Fatih Polat² Ali Hakan Ören³ ¹ Former Ph.D. Student in Dokuz Eylül University, Ph.D. Student in Monash University

² The Graduate School of Natural and Applied Science/Dokuz Eylül University, İzmir, Turkey

³ Department of Civil Engineering/ Dokuz Eylül University, İzmir, Turkey

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

CONTENT

- **1. INTRODUCTION**
- **2.** RESEARCH AIM
- **3.** MATERIALS and METHODS
- 4. **RESULTS**
- **5.** CONCLUSIONS
- 6. **REFERENCES**

1. INTRODUCTION

- Hydration of GCL from underlying subsoil is widely investigated in the literature.
 - -Subsoil and environmental conditions
 - -GCL properties
 - -Bentonite type
 - -Mass per unit area (MPUA)
- Rayhani et al. (2011), Karakuş et al. (2022) and Ören et al. (2022) showed the effect of mass per unit area (MPUA) on water content of GCL.

2. RESEARCH AIM

- The aim of this study is to investigate the influence of mass per unit area on the hydration behavior of GCL.
- MPUA of GCL deployed to the laboratory is within a narrow range throughout the GCL roll.
- To examine the hydration performance of GCL over a wider MPUA range, laboratory type needle punching equipment was developed.

Laboratory Type Needle Punching Equipment

ADVANCES IN GEOSYNTHETICS 7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Manufacturing Process of Artificial GCL (A-GCL)

7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

3. MATERIALS & METHODS

ADVANCES IN GEOSYNTHETICS

ISBANE CONVENTION & EXHIBITION CENTRE

Material properties

	Materials	P-GCL	Subsoil	
 Polymer modified GCL (P-GCL) were used. 	MPUA (kg/m ²)	4.0-4.5		
They were hydrated over compacted silty sand.	Carrier geotextile	Woven		
	Cover geotextile	Non-woven		
 Properties of GCL and silty sand subsoil were determined following ASTM methods. 	Specific gravity	2.71	2.67	
	Plastic limit (%)	51	NP	
	Liquid limit (%)	222	31	
	Clay content (%)	73	1	
	Swell index (mL/2g)	26.5		

Hydration Setup of GCL

- Standard Proctor Energy
- ♦ w_{opt} = %12 ve γ_{dmaks} = 18.3 kN/m³.
- Subsoil were compacted on 2% wet side of optimum water content (i.e 14%).
- Non-woven side of GCL was in contact with subsoil during hydration.

4. RESULTS

Comparison of Hydration Behavior of Factory Manufactured GCL with those of A-GCLs with different needle punched densities.

ANCES IN GEOSYNTHETICS

Hydration Behavior of A-GCL with those of A-GCLs with different MPUAs.

The effect of MPUA on the equilibrium water content of A-GCL

Comparison of equilibrium water content obtained in this study with those reported in the literature as a function of MPUA

5. CONCLUSIONS

- Needle punching density of factory manufactured GCL was determined by comparing GCLs with same MPUA manufactured at different NPD values (5.0, 10 and 15/cm²).
- It was observed that factory manufactured GCL followed the same hydration path as GCL manufactured at 15/cm² in the lab. Therefore, MPUA effect over wider range was investigated on GCL manufactured at 15/cm² in the lab.
- GCL manufactured at 5/cm² had lower water contents when compared to those at other NPDs.
- Higher water contents were achieved by GCL with MPUA of 3.0 kg/m² while lower water contents were achieved throughout 30 days as MPUA increases.
- It was seen that equilibrium water contents decreased as MPUA increased.
- Obtained results are consistent with those reported in the literature.

ACKNOWLEDGEMENT

This study has been financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with a Grant No: 119R044. The authors are grateful to TUBITAK for this valuable support. Presenter is also very grateful to GeoANZ Conference Committee who provided conference scholarship.

6. REFERENCES

Ören, A.H., Taşkesti, B.E. & Özdamar Kul, T. Evaluating the Hydration and Hydraulic Performance of a Geosynthetic Clay Liner (GCL) in Terms of Bentonite Mass per Unit Area. Int. J. of Geosynth. ^[ZMIR-1982] and Ground Eng. 8, 27 (2022) <u>https://doi.org/10.1007/s40891-022-00372-4</u>

Karakuş Y, Taşkesti BE, Ören AH (2022) Combined infuence of subsoil water content and mass per unit area on cation exchange behavior of geosynthetic clay liners. Geotext Geomembranes. <u>https://doi.org/10.1016/j.geotexmem.2021.10.002</u>

Rayhani, M.T., Rowe, R.K., Brachman, R.W.I., Take, W.A., Siemens, G., 2011. Factors affecting GCL hydration under isothermal conditions. Geotextiles and Geomembranes 29, 525–533. https://doi.org/10.1016/j.geotexmem.2011.06.001

Azad FM, Rowe RK, El-Zein A, Airey DW (2011) Laboratory investigation of thermally induced desiccation of GCLs in double composite liner systems. Geotext Geomembranes 29:534–543. https://doi.org/10.1016/j.geotexmem.2011.07.001

POTUZ EYLU,

Questions are welcome

