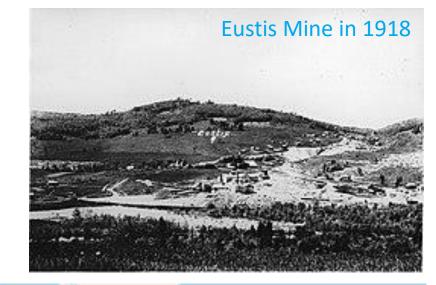


A sensitive mine closure in Canada – analysis after 15 years of completion using a multilinear drainage geocomposite for surface water collection

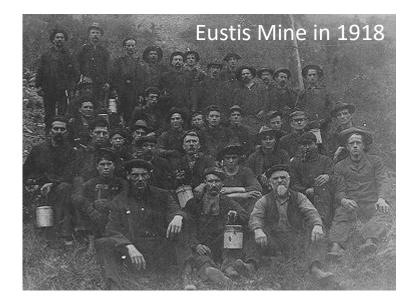
Pascal Saunier. P.Eng. BDM North America & Pacific +687 985924 psaunier@afitextexel.com

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE



- Description of the situation
- Multi-linear drainage geocomposites technology
- Technical approach for run-off drainage (final closure)
- Exhumation and tests after 15 years of use
- Conclusion

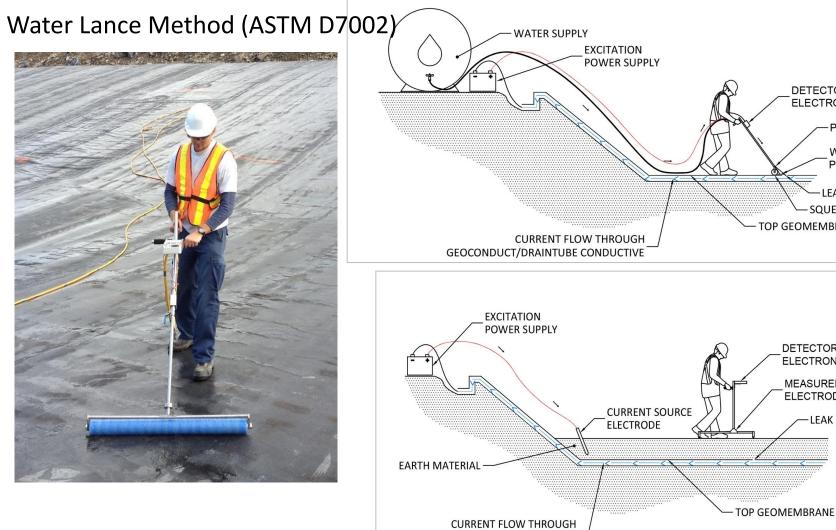
The Eustis mine is a mine historically located in the Eastern Townships region (now in the Eastern Townships administrative region) of Quebec, Canada. It was started around 1865 and closed in 1939. When it closed, it was the last operating mine in the region's mine complex and also the oldest copper mine in Canada as well as the deepest copper mine in Canada.


During the American Civil War, copper was in high demand. Several mines appeared in what is now the Eastern Townships: the Capelton, Eustis and Albert mines. Three mining engineers, members of the Orford Nickel and Copper Company, acquired the Eustis mine area around 1863. The initial plan was to create a horizontal access drift about 300 m (1,000 feet) long to intersect the shaft of the Hartford mine, owned by the Canadian Copper and Sulphur Company. The first installations were probably called the Crown Mine, but the name Eustis Mine was later used.

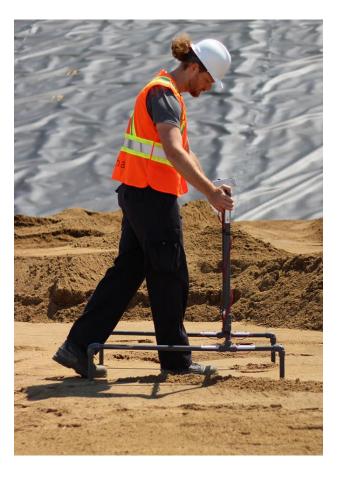
Seulement trois de ces sites seront restaurés dans la province cette année, dont la mine Eustis pour 3 millions de dollars en deux ans. « On y va par priorité », a affirmé le ministre Pierre Corbeil. Cette mine de cuivre a été exploitée pendant des dizaines d'années jusqu'à sa fermeture, en 1939. Des métaux lourds se répandent toujours dans la rivière Massawipi et rien ne pousse sur la terre acide du site.

Client : Ministry of Natural Ressources of CANADA Eng : GSI Environnement Installer : Solmax-Texel QA/QC : Groupe Alphard Year of completion : 2007-2009 Total area restorated : 50 000 m2 (in 3 sections)

Eustis Mine in 2022


Typical cover design

- 50 mm top soil
- 450 mm backfill
- DRAINTUBE 450 FT0.5 D20
- 60 mil Textured HDPE GMB
- Protection gtx
- Reshaped profile



QA/QC Program

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

GEOCONDUCT/DRAINTUBE CONDUCTIVE

DETECTOR ELECTRONICS

> -PROBE WATER PUDDLE

LEAK SQUEEGEE

TOP GEOMEMBRANE

DETECTOR **ELECTRONICS** MEASUREMENT ELECTRODES

LEAK

Dipole Method (ASTM D7007)

Multi Linear drainage geocomposite: DRAINTUBE®

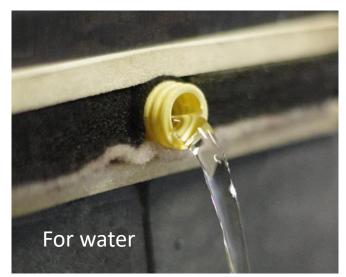
SBANE CONVENTION & EXHIBITION CENTR

Drainage geocomposite with drainage conduits regularly spaced between two geotextiles instead of a geonet core

Drainage conduits:

- Perforated PP mini-pipes,

Perforated mini-pipes 20 mm or 25 mm diame (4/5" or 1")	<u>eter</u>
	Nonwoven geotextiles
<u>between mini-pipes</u> 4 m, 1/2 m, 1 m, 2 m (10'', 20'', 40'', 80'')	


Main characteristics:

- Rolls 3.98 m x 75 m
- Geotextiles layers from 100 g/m2 to 2000 g/m2
- Mini-pipes with high compressive resistance
 Pipe stiffness at 5% deflection (ASTM D2412) > 3 000 kPa

ISBANE CUNVENTION & EXHIBITION CENTRE

- Transmissivity up to 4x10⁻³ m2/s (i=0.1, under 2500 kPa)
- Light and Flexible product
- No creep, No geotextile intrusion
- No peel adhesion issue

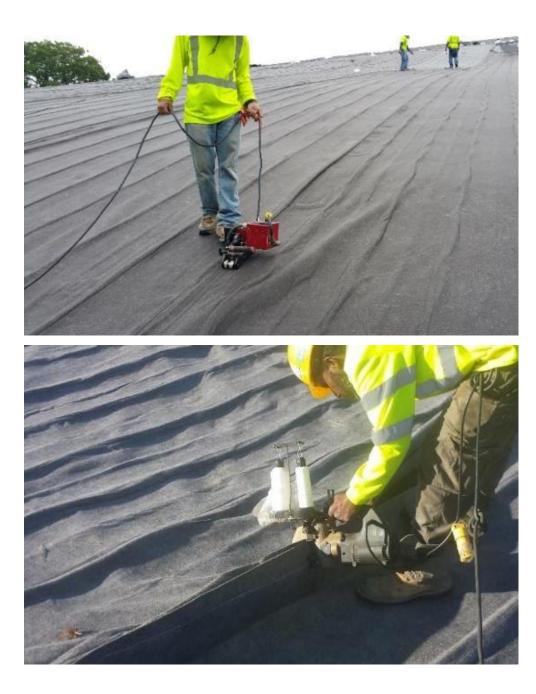
More than **4,000,000 m2 installed in North America** since 2007

More than 300 projects in North America

100% conformity for all projects completed in North America

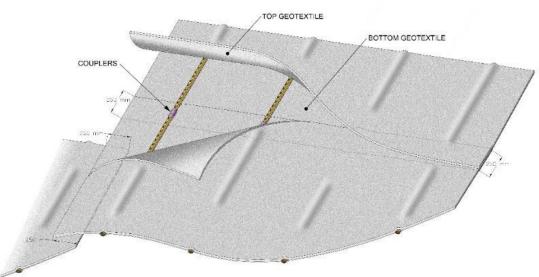
More than **23,000,000 m² installed around the world** since 1988

Installation



Installation

Welding, Sewing, additional overlap



Installation

Welding, Sewing, additional overlap

GEOANZ #1 ADVANCES IN GEOSYNTHETICS 7-9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

Backfill

Connection to collector trench / ditch

Quick Connect System

DRAINTUBE is a Multi-linear drainage geocomposite as per **ASTM D4439** Standard Terminology for Geosynthetics.

Designation: D4439 - 17

Standard Terminology for Geosynthetics¹

multi-linear drainage geocomposite, *n*—a manufactured product composed of a series of parallel single drainage conduits regularly spaced across its width sandwiched between two or more geosynthetics.

Geosynthetic Institute

475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441

Geosynthetic Institute

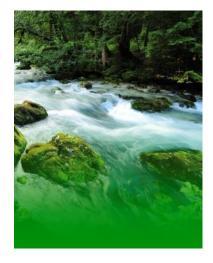
GRI Test Method GC15^{*}

Standard Test Method for

"Determining the Flow Rate per Unit Width of Drainage Geocomposites with Discrete High Flow Components"

DRAINTUBE geocomposite is also characterized by the Geosynthetic Institute **GRI GC15 standard test method** for Determining the Flow Rate per Unit Width of Drainage Geocomposites with Discrete High Flow Components.

MOST COMMON APPLICATIONS


BUILDINGS & SPORTS

CIVIL

MINING & ENERGY

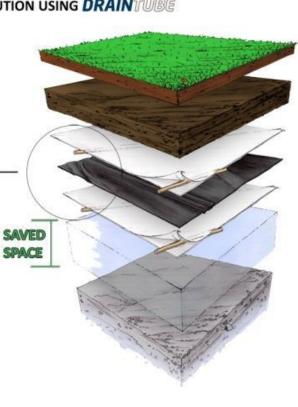
ENVIRONMENTAL



BUILDINGS & SPORTS

CIVIL

MINING & ENERGY

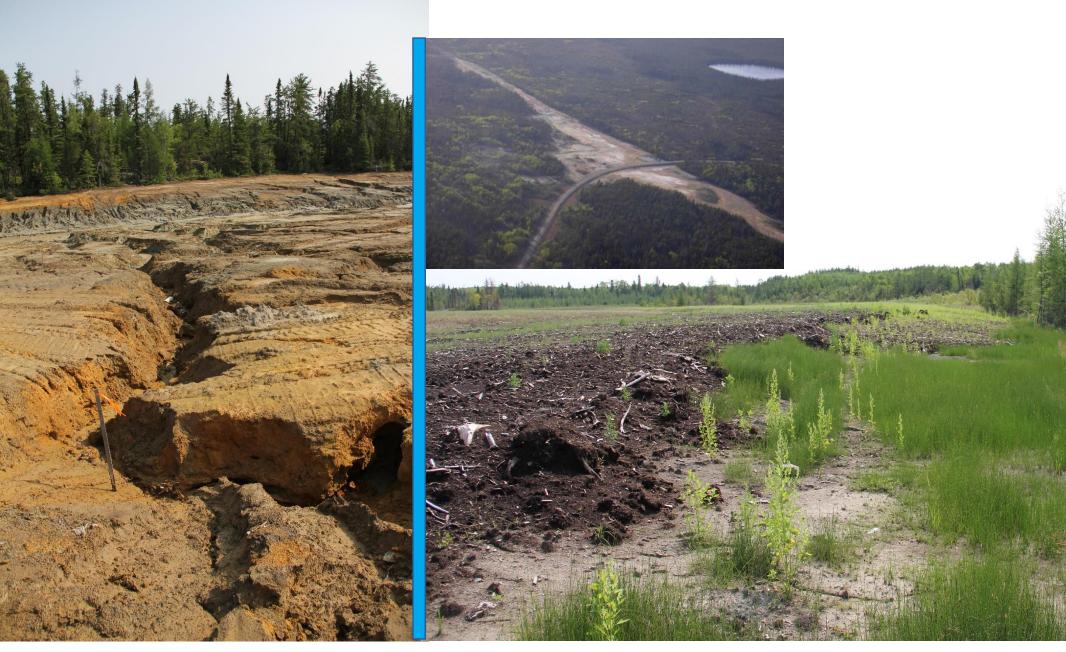

ENVIRONMENTAL

Run-off drainage / Gas venting on final covers

SAVED SPACE

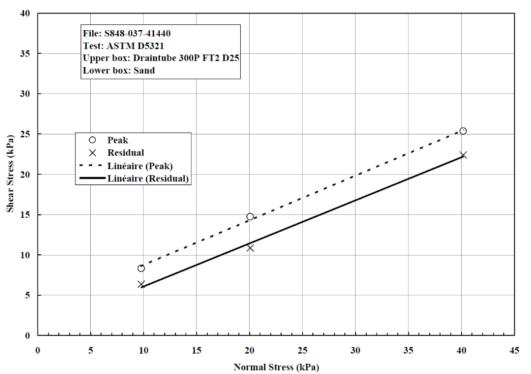
OPTIMIZED SOLUTION USING DRAINTUBE

Case Study : HSPP, BC – 2014 / 15


Gibraltar Mines, BC – 2010

McKay River - Suncor, AB – 2013

Central Manitoba Mines, MB – 2011


Case Study : Eustis Mine, Qc - 2008 - 2010

Slope Stability

Interface	Draintube	/ Sand
-----------	-----------	--------

Material Tested	Typical Friction Angle (°) with DRAINTUBE®
Interface Sand/ Granular Soil	Directly related to the internal friction angle of the soil.
Textured Geomembrane	28-30
Bituminous Geomembrane	36
Gripnet Geomembrane	35
Geosynthetic Clay Liner	23
Low-permeability soil	Directly related to the internal friction angle of the soil.

Résidual friction angles from 18° to 36° (function of the material in contact)

No peel adhesion issue

Reduction factors for transmissivity

GSI White Paper #4 (Koerner)

Reduction Factors (RFs) Used in Geosynthetic Design

$$Q_{allow} = \frac{Q_{ult}}{RF_{in} . RFcr . RFcc . RFbc}$$

 q_{allow} = allowable (or design) flow rate or transmissivity,

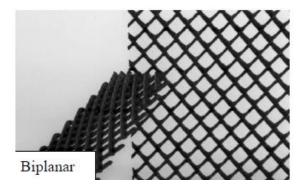
 q_{ult} = ultimate (or as-manufactured) flow rate or transmissivity,

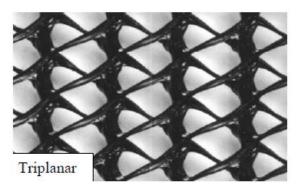
RF_{IN} = reduction factor for intrusion of geotextiles or geomembranes into the core of drainage product,

RF_{CR} = reduction factor for creep of the drainage core or covering geosynthetics,

 RF_{CC} = reduction factor for chemical clogging of drainage core, and

 RF_{BC} = reduction factor for biological clogging of drainage core.




Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core

For geonet drainage core

Reduction of the drainage capacity under load

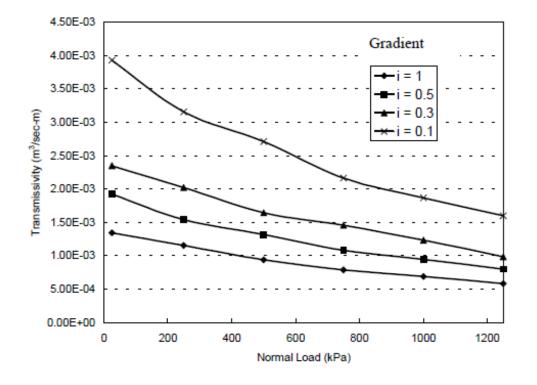
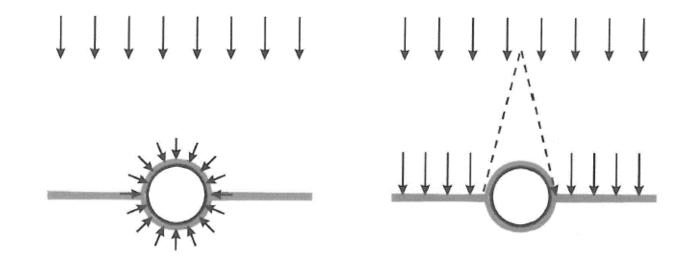


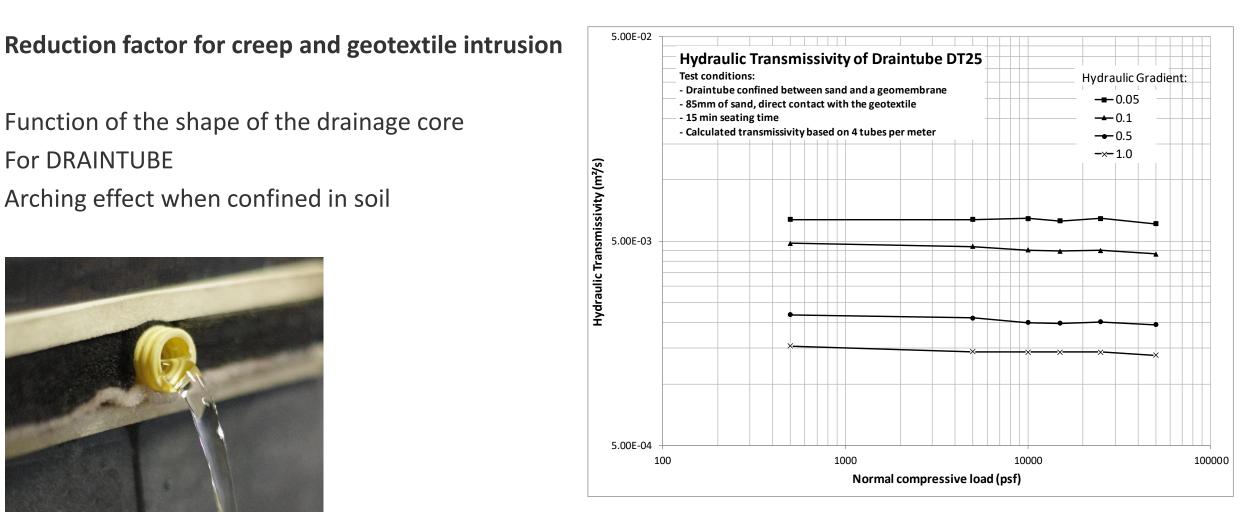
Figure 2.3 Transmissivity data vs. normal loads for a triplanar geonet laminated with a 270g/m² nonwoven on each side with soil as a top boundary and aluminum plate lower boundary (ASTM D4716).



Reduction factor for creep and geotextile intrusion

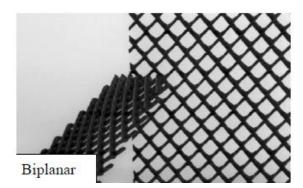
Function of the shape of the drainage core For DRAINTUBE

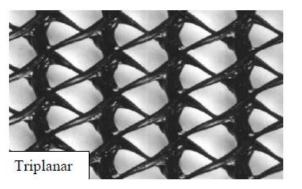
Arching effect when confined in soil

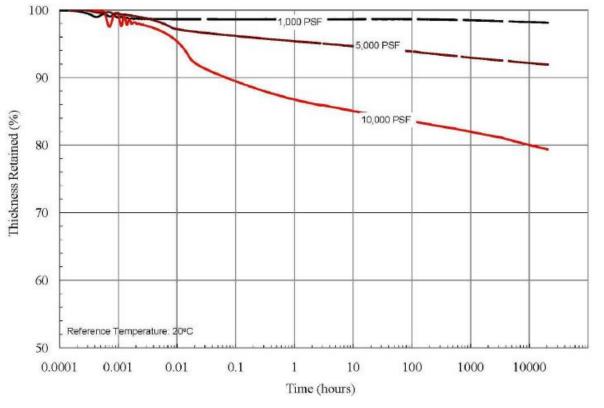


For DRAINTUBE

Function of the shape of the drainage core

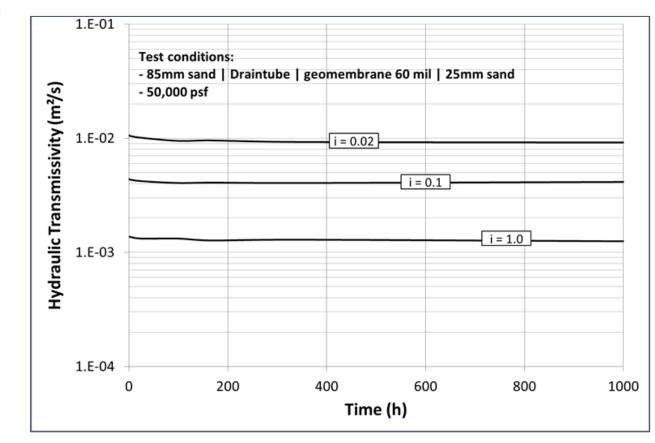

Arching effect when confined in soil





Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core For geonet drainage core Reduction of the drainage capacity over time


Creep Curves for a 250 mil geonet

Reduction factor for creep and geotextile intrusion

Function of the shape of the drainage core For DRAINTUBE Arching effect when confined in soil

Published related reference

Assessment of the Resistance of Drain Tubes planar drainage geocomposites to high compressive loads Eric Blond (SAGEOS) and Pascal Saunier (AFITEX-Texel), ICG 2010

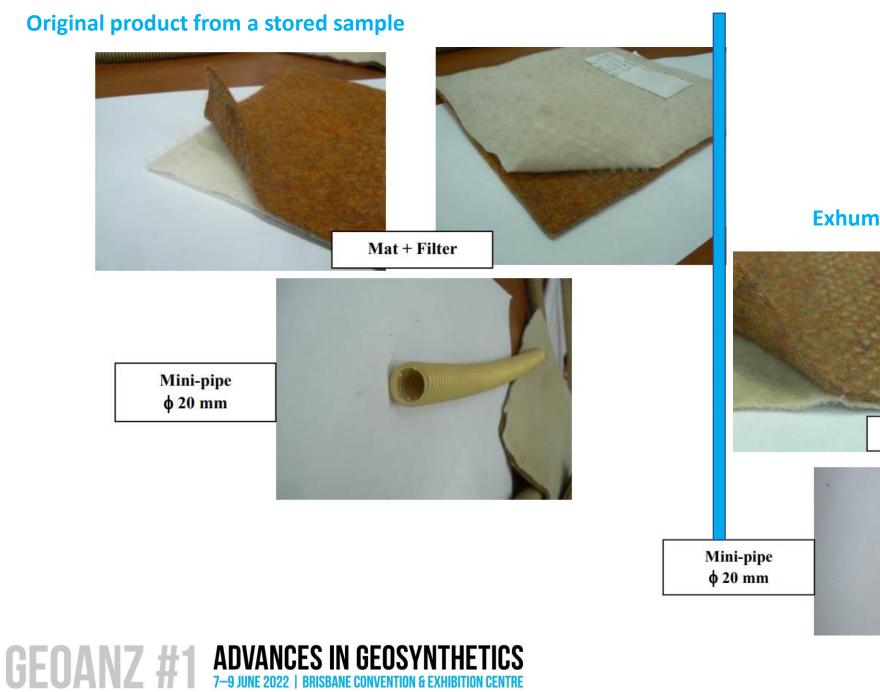
Designation: D7931 - 17

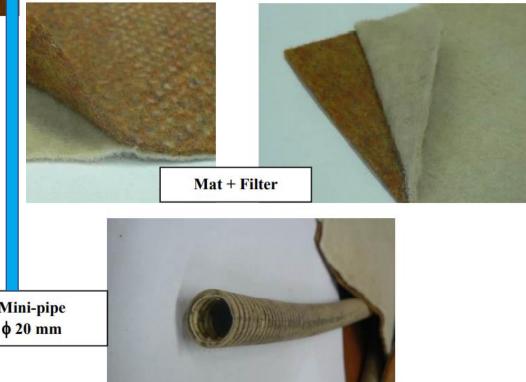
Standard Guide for Specifying Drainage Geocomposites¹

8. Reduction Factor of Creep

8.1 Depending on the site-specific situation and applied stresses, the drainage core of the geocomposite might creep which leads to a reduction of its in-plan flow capacity. The creep phenomenon is core dependent. Some products, like multilinear drainage geocomposites, may not be sensitive to creep when confined into a soil matrix because of their core structures.

- Complete loss of functions ?
- Still efficient properties ?
- Overall behaviour of the product





Exhumed product after 10 years

IDENTIFICATION

Mass per area NF EN ISO 9864

Weigth measure of several samples of 400 cm²

Balance de précision

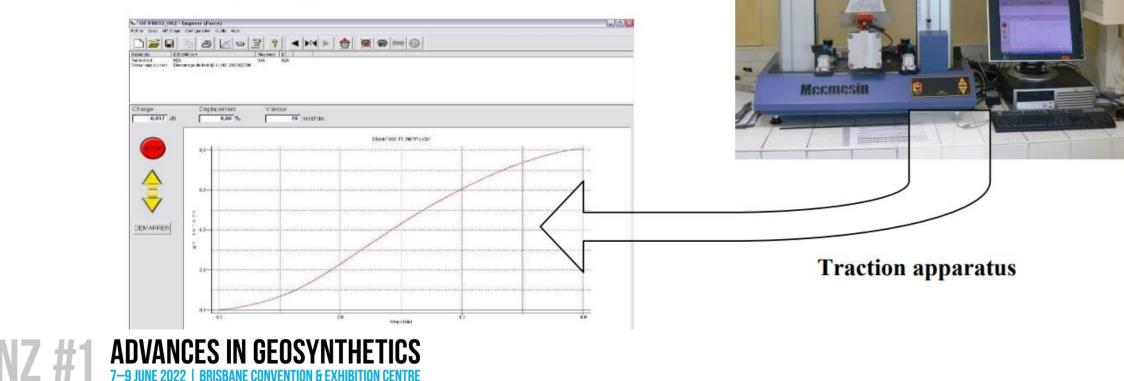
Thickness NF EN ISO 9863-1

Measurement of the thicknesss with:

- a presser foot
- a constraint setting cylinder
- a thick Compare

Comparateur d'épaisseur

MECHANICAL PROPERTIES


Gt

Tear strength and ellongation at break NF EN ISO 10319

Tests on several samples

- width: 200 mm .
- length: 250 mm .

7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

RESULTS

Original sample

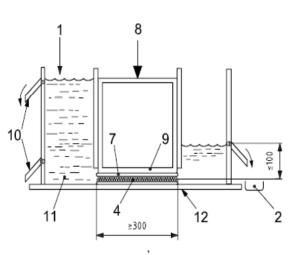
		PRV 95		AVERAGE
CONTROLS	VNAP	Mini	Maxi	
I	dentificati	on		
Mass per area in g/m ²	450	405	495	430,00
Thickness/mm under 2 kPa	5,10	4,08	6,12	4,28
Thickness/mm under 20 kPa	3,90	3,12	4,68	3,89
7	ear streng	ht		
Machine direction in kN/m	12	10,44	NR	23,90
XMachine direction in kN/m	12	10,44	NR	28,05
Ellor	ngation at	break		
Machine direction in %	110	77,00	143	113,00
XMachine direction in %	110	77,00	143	83,33

10 years old sample

	_
AVERAGE	
· · · ·	
845,00 s 4,31 3,82	oil/dust presence
24 00	.94% loss in machine direction (tear) 4.43% loss in xmachine direction (tear)
	1% loss in machine direction (elongation) 2.22% loss in xmachine direction (elongation)

Safety factor at design stage of 2.00

HYDRAULIC PROPERTIES

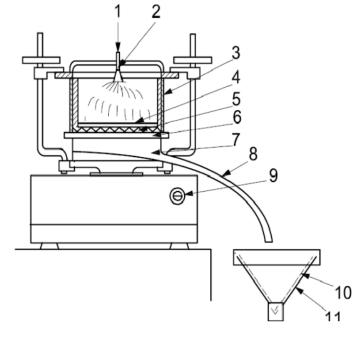

In plan flow rate NF EN ISO 12958

Measurement of transmissivité with:

- a Transmissivimeter apparatus
- un chronometer
- un weight recipient

Schema:

1 water inlet


Legend

- 2 Water collector
- 3 manometers
- 4 test tube 5 membrane
- 6 pressure cell
- 7 foam
- 8 charge
- 9 laod plate
- 10 gradients
- 11 Water tanks 12 Base

Filtration opening size of the filter

Schema:

Legend

1 water inlet

2 pulverization

- 3 dispositif de serrage
- 4 granular material
- 5 test tube
- 6 support net

7 tank

- 8 connection tube
- 9 amplitude regulation
- 10 filter papier
- 11 collection system

RESULTS

Original sample

Applied constraints	Hydr. Grad.	Flow (1)	Flow (2)	Flow (3)	Aver. Flow	T	In plan Flow rate
(kPa)	i	(l/min)	(l/min)	(l/min)	(l/min)	(°C)	(m²/s)
20	1	7.25	7.10	7.30	7.21	18	6.3 10 ⁻⁴
100	1	6.01	5.87	5.80	5.89	18	5.2 10 ⁻⁴

10 years old sample

5.31.10 ⁻⁴	15% loss at 20 kPa		
4.76.10 ⁻⁴	9% loss at 20 kPa		

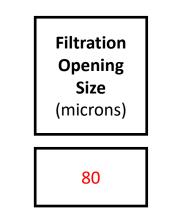
 RF_{cc} at design stage of 1.40

AFITEX

Results:

Measured Opening Filtration Size : Of = 80 mm

Conclusion:


The Filtration Opening size is the one that has been initially specified in 2004 with DRAINTUBE 450 FT.

Champhol, 2014 Septembre 4th

Responsable laboratoire

Jamal CHAMINI

80

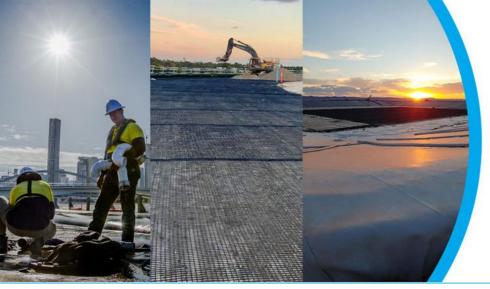
General Conclusions:

After the in situ exhumation and the related laboratory testings:

 A visual inspection of Draintube FT after 10 years of usage does not show any aspect of modification of the filter, nor trace of soils into the <u>mini-pipes</u>

Laboratory testings lead to the following results:

<u>Mas per area:</u>	2004 Value: 2014 Value:	430 g/m² 845 g/m²	
<u>Thickness under 20 kPa:</u>	2004 Value: 2014 Value:	3.89 mm 3.82 mm	
<u>Tear Strength (MD.):</u>	2004 Value: 2014 Value:	23.9 kN/m 22 kN/m	
Ellongation at break:	2004 Value: 2014 Value:		
In plan flow rate:	2004 Value:	20 kPa 100 kPa	6.3 .10 ⁻⁴ m ² /s 5.2 .10 ⁻⁴ m ² /s
	2014 Value:	20 kPa 100 k Pa	$\begin{array}{c} 5.31 \ .10^{-4} \ m^{2} / s \\ 4.76 \ .10^{-4} \ m^{2} / s \end{array}$
Filtration Opening Size:	2004 Value: 2014 Value:	80 μm 80 μm	


- All properties still in the specification / design criterias
- No visual slope instability
- Great vegetation
- In 5 years for the 20th anniversary ?

2022

GEOGRAZ #1 ADVANCES IN GEOSYNTHETICS 7–9 JUNE 2022 | BRISBANE CONVENTION & EXHIBITION CENTRE

www.geoanzconference.com.au

Pascal Saunier

Business Development Manager – North America & Pacific +687 985924 psaunier@afitextexel.com